1
The traveling salesman problem (TSP) and the graph partitioning problem (GPP) are two important combinatorial optimization problems with many applications. Due to the NP-hardness of these problems, heuristic algorithms are commonly used to find good, or hopefully near-optimal, solutions. Kernighan and Lin have proposed two of the most successful heuristic algorithms for these problems: The Lin-Kernighan (LK) algorithm for TSP and the Kernighan-Lin (KL) algorithm for GPP. Although these algorithms are problem specific to TSP and GPP, they share a problem-agnostic mechanism, called variable depth search, that has wide applicability for general search. This paper expresses this mechanism as part of a general search algorithm, called the Kernighan-Lin Search algorithm, to facilitate its use beyond the TSP and GPP problems. Experimental comparisons with other general search algorithms, namely, genetic algorithms, hill climbing, and simulated annealing, on function optimization test suites confirm that the new algorithm is very successful in solution quality and running time.
You must log in or register to comment.