The origin of life on Earth via the spontaneous emergence of a protocell prior to Darwinian evolution remains a fundamental open question in physics and chemistry. Here, we develop a conceptual framework based on information theory and algorithmic complexity. Using estimates grounded in modern computational models, we evaluate the difficulty of assembling structured biological information under plausible prebiotic conditions. Our results highlight the formidable entropic and informational barriers to forming a viable protocell within the available window of Earth's early history. While the idea of Earth being terraformed by advanced extraterrestrials might violate Occam's razor from within mainstream science, directed panspermia -- originally proposed by Francis Crick and Leslie Orgel -- remains a speculative but logically open alternative. Ultimately, uncovering physical principles for life's spontaneous emergence remains a grand challenge for biological physics.