Lemmy: Bestiverse
  • Communities
  • Create Post
  • Create Community
  • heart
    Support Lemmy
  • search
    Search
  • Login
  • Sign Up
RSS BotMB to Hacker NewsEnglish · 6 days ago

ChunkLLM: A Lightweight Pluggable Framework for Accelerating LLMs Inference

arxiv.org

external-link
message-square
0
fedilink
2
external-link

ChunkLLM: A Lightweight Pluggable Framework for Accelerating LLMs Inference

arxiv.org

RSS BotMB to Hacker NewsEnglish · 6 days ago
message-square
0
fedilink
Transformer-based large models excel in natural language processing and computer vision, but face severe computational inefficiencies due to the self-attention's quadratic complexity with input tokens. Recently, researchers have proposed a series of methods based on block selection and compression to alleviate this problem, but they either have issues with semantic incompleteness or poor training-inference efficiency. To comprehensively address these challenges, we propose ChunkLLM, a lightweight and pluggable training framework. Specifically, we introduce two components: QK Adapter (Q-Adapter and K-Adapter) and Chunk Adapter. The former is attached to each Transformer layer, serving dual purposes of feature compression and chunk attention acquisition. The latter operates at the bottommost layer of the model, functioning to detect chunk boundaries by leveraging contextual semantic information. During the training phase, the parameters of the backbone remain frozen, with only the QK Adapter and Chunk Adapter undergoing training. Notably, we design an attention distillation method for training the QK Adapter, which enhances the recall rate of key chunks. During the inference phase, chunk selection is triggered exclusively when the current token is detected as a chunk boundary, thereby accelerating model inference. Experimental evaluations are conducted on a diverse set of long-text and short-text benchmark datasets spanning multiple tasks. ChunkLLM not only attains comparable performance on short-text benchmarks but also maintains 98.64% of the performance on long-context benchmarks while preserving a 48.58% key-value cache retention rate. Particularly, ChunkLLM attains a maximum speedup of 4.48x in comparison to the vanilla Transformer in the processing of 120K long texts.

Comments

alert-triangle
You must log in or register to comment.

Hacker News

hackernews

Subscribe from Remote Instance

You are not logged in. However you can subscribe from another Fediverse account, for example Lemmy or Mastodon. To do this, paste the following into the search field of your instance: !hackernews@lemmy.bestiver.se
lock
Community locked: only moderators can create posts. You can still comment on posts.

Posts from the RSS Feed of HackerNews.

The feed sometimes contains ads and posts that have been removed by the mod team at HN.

Visibility: Public
globe

This community can be federated to other instances and be posted/commented in by their users.

  • 339 users / day
  • 1.33K users / week
  • 3.64K users / month
  • 9.46K users / 6 months
  • 2 local subscribers
  • 2.9K subscribers
  • 34.7K Posts
  • 15K Comments
  • Modlog
  • mods:
  • patrick
  • RSS Bot
  • BE: 0.19.5
  • Modlog
  • Instances
  • Docs
  • Code
  • join-lemmy.org