Tap for spoiler

The bowling ball isn’t falling to the earth faster. The higher perceived acceleration is due to the earth falling toward the bowling ball.

  • Sasha@lemmy.blahaj.zone
    link
    fedilink
    English
    arrow-up
    4
    ·
    edit-2
    2 days ago

    Possibly?

    A bowling ball is more dense than a feather (I assume) and that’s probably going to matter more than just the size. Things get messy when you start considering the actual mass distributions, and honestly the easiest way to do any calculations like that is to just break each object up into tiny point like masses that are all rigidly connected, and then calculate all the forces between all of those points on a computer.

    I full expect it just won’t matter as much as the difference in masses.

      • Sasha@lemmy.blahaj.zone
        link
        fedilink
        English
        arrow-up
        2
        ·
        edit-2
        1 day ago

        Yeah it would fair point, I’ll be honest I haven’t touched Newtonian gravity in a long time now so I’d forgotten that was a thing. You’d still need to do a finite element calculation for the feather though.

        There’s a similar phenomenon in general relativity, but it doesn’t apply when you’ve got multiple sources because it’s non-linear.

        • BB84@mander.xyzOP
          link
          fedilink
          English
          arrow-up
          2
          ·
          edit-2
          1 hour ago

          So if I have a spherically symmetric object in GR I can write the Schwarzschild metric that does not depend on the radial mass distribution. But once I add a second spherically symmetric object, the metric now depends on the mass distribution of both objects?

          Your point about linearity is that if GR was linear, I could’ve instead add two Schwarzschild metrics together to get a new metric that depends only on each object’s position and total mass?

          Anyway, assuming we are in a situation with only one source, will the shell theorem still work in GR? Say I put a infinitely light spherical shell close to a black hole. Would it follow the same trajectory as a point particle?

          • Sasha@lemmy.blahaj.zone
            link
            fedilink
            English
            arrow-up
            1
            ·
            edit-2
            35 minutes ago

            Yeah, once you add in a second mass to a Schwarzschild spacetime you’ll have a new spacetime that can’t be written as a “sum” of two Schwarzschild spacetimes, depending on the specifics there could be ways to simplify it but I doubt by much.

            If GR was linear, then yeah the sum of two solutions would be another solution just like it is in electromagnetism.

            I’m actually not 100% certain how you’d treat a shell, but I don’t think it’ll necessarily follow the same geodesic as a point like test particle. You’ll have tidal forces to deal with and my intuition tells me that will give a different result, though it could be a negligible difference depending on the scenario.

            Most of my work in just GR was looking at null geodesics so I don’t really have the experience to answer that question conclusively. All that said, from what I recall it’s at least a fair approximation when the gravitational field is approximately uniform, like at some large distance from a star. The corrections to the precession of Mercury’s orbit were calculated with Mercury treated as a point like particle iirc.

            Close to a black hole, almost definitely not. That’s a very curved spacetime and things are going to get difficult, even light can stop following null geodesics because the curvature can be too big compared to the wavelength.

            • Sasha@lemmy.blahaj.zone
              link
              fedilink
              English
              arrow-up
              1
              ·
              edit-2
              28 minutes ago

              On that first point, calculating spacetime metrics is such a horrible task most of the time that I avoided it at all costs. When I was working with novel spacetimes I was literally just writing down metrics and calculating certain features of the mass distribution from that.

              For example I wrote down this way to have a solid disk of rotating spacetime by modifying the Alcubierre warp drive metric, and you can then calculate the radial mass distribution. I did that calculation to show that such a spacetime requires negative mass to exist.