Liquid fuels have a couple advantages in certain scenarios. Aircraft, for example. The energy density of liquid fuels is considerably higher than batteries. Aircraft only take on as much fuel as they need to safely reach their destination. They takeoff with more weight than they can safely land, burning off fuel weight throughout their flight until they are light enough to land. Dumping fuel overboard to get down to landing weight in an emergency.
Switch these aircraft over to batteries, and their landing weight is the same as their takeoff weight. They carry the same “fuel” weight for a regional flight as they do for a maxinum-range flight.
Well, I don’t know if the reason given is that significant, they’d just plan around the fixed weight. The issue being the energy per unit volume/weight being so far behind hydrocarbons that some applications do demand it.
So while stationary/grid applications may lean battery since size/weight hardly matters, and EVs are debatable good enough for many scenarios, I will grant that for aircraft, boats, and some heavy equipment it’s hard to beat hydrocarbons.
Unfortunately, on that front it has to compete with extracted hydrocarbons and doesn’t seem like it can compete as yet. It however may give hope for a more resource constrained future that the battery-hostile scenarios may still be fulfilled in a sustainable way, just at higher relative expense than today. Or they iterate on their processes to have cheaper equipment and/or increased efficiency to come closer to competitive with extracted hydrocarbons. Or a viable thing to reference for some governments mandating sustainably sourced hydrocarbons when they are really needed.
Liquid fuels have a couple advantages in certain scenarios. Aircraft, for example. The energy density of liquid fuels is considerably higher than batteries. Aircraft only take on as much fuel as they need to safely reach their destination. They takeoff with more weight than they can safely land, burning off fuel weight throughout their flight until they are light enough to land. Dumping fuel overboard to get down to landing weight in an emergency.
Switch these aircraft over to batteries, and their landing weight is the same as their takeoff weight. They carry the same “fuel” weight for a regional flight as they do for a maxinum-range flight.
Well, I don’t know if the reason given is that significant, they’d just plan around the fixed weight. The issue being the energy per unit volume/weight being so far behind hydrocarbons that some applications do demand it.
So while stationary/grid applications may lean battery since size/weight hardly matters, and EVs are debatable good enough for many scenarios, I will grant that for aircraft, boats, and some heavy equipment it’s hard to beat hydrocarbons.
Unfortunately, on that front it has to compete with extracted hydrocarbons and doesn’t seem like it can compete as yet. It however may give hope for a more resource constrained future that the battery-hostile scenarios may still be fulfilled in a sustainable way, just at higher relative expense than today. Or they iterate on their processes to have cheaper equipment and/or increased efficiency to come closer to competitive with extracted hydrocarbons. Or a viable thing to reference for some governments mandating sustainably sourced hydrocarbons when they are really needed.